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Abstract: - Nickel-based superalloys containing many different chemical elements are systems with complex 
doping. These materials are widely used for the gas turbine engines parts and other heat-resistant devices 
manufacturing, which makes them extremely important for the industry. One of the main service property of 
the superalloys is the heat resistance that is expressed by the value of the ultimate tensile strength (UTS) or 
creep to rupture (σ). The level of damage required to cause failure is measured after the metal is heated and 
maintained to a certain temperature for a specific time interval. The heat resistance of alloys with different 
chemical compositions is often estimated using the complex Larson-Miller parameter (PLM), which combines 
the temperature and the exposure time. The development of new alloys takes considerable time and is quite 
expensive. A model describing the dependence of UTS on the alloys composition would be an essential help for 
the developers. In our work, we have applied a statistical method for modelling the properties of alloys 
according to their composition. The approach is based on the use of artificial neural networks with preliminary 
processing of the input data. This allowed us to obtain a series of dependences σ = f(PLM)  for a large number of 
superalloys compositions. The simulation results are in good agreement with the experimental data. Plots of 
heat resistance vs PLM have a characteristic exponential form for all alloys, however, each composition has its 
own characteristics reflected in the graph’s slope coefficient, which indicates the thermal stability of an alloy. 
 
Key-Words: - nickel-based superalloys, artificial neural network, ultimate tensile strength, heat resistance, 
Larson-Miller 
 
 

1 Introduction 
Nickel-based, but containing significant amounts of 
at least twelve other elements, including exotic 
rhenium, ruthenium, tantalum and hafnium, 
superalloys are high-temperature materials that 
demonstrate excellent resistance to mechanical and 
chemical degradation at temperatures close to their 
melting points. Since they first appeared in the mid-
20th century, these alloys have had a unique impact 
on industry and technology. The remarkable 
characteristics of superalloys are the result of many 
years of developers’ efforts. Superalloys products 
must retain the service complex of properties under 
conditions of high temperatures and mechanical 
loads throughout the design life cycle. Plenty of 
researchers and technologists have worked hard to 
develop a basic understanding of their physical 
behavior and the more practical aspects necessary 
for the best utilization of these alloys. In addition, it 

became obvious that the themes of alloy design, 
process development, component design, life 
expectancy, and material behavior are closely 
interrelated [1-7].  

The main service properties of the alloys are heat 
resistance and structural phase stability. The heat 
resistance is the ability of material to resist the load 
at high temperatures, without undergoing permanent 
deformation or fracture. The heat resistance of 
nickel alloys is estimated by the long-term strength 
limit, i.e. the greatest mechanical stress that the 
material could resist without failure at a given 
temperature, test duration and working atmosphere 
(the ultimate tensile strength, UTS). The phase 
stability is the ability of a material to retain 
structural properties during a period of prolonged 
isothermal exposures.  
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In order to increase their service properties, 
doping of the alloys with Cr, Co, Mo, W, Al, Ti, Nb, 
B, Fe, Y, Zr, Ta, Re, Ru, V, Ce, La, Si, Mn, Mg, Hf, 
Ir etc. is carried out. Some of the alloying elements 
are used to strengthen the nickel matrix by creating 
a solid solution. The other part forms excess phases: 
intermetallides, carbides and borides. Under 
operating conditions at high temperatures, the 
hardening phases dissolve and embrittlement is 
released. The later this occurs, the more heat-stable 
the alloy is. Frequently, new alloy compositions 
with sufficiently high initial heat resistance are not 
thermally stable and lose their properties pretty fast. 
In any case, the composition of the alloys is 
extremely diverse. As an example, we give the 
compositions of some common superalloys (see 
Table 1). 

The development of the superalloys was 
inextricably linked with the history of the jet engine 
for which they were originally developed. The 
superalloys work in the hottest sections of turbines 
under the heaviest loads, with primary importance 
being given to ensuring the integrity of the 
components made from them. Currently, an active 
search for further improvements in the temperature 
characteristics of the superalloys is underway.  

Nowadays, the single-crystal superalloys are 
being used in increasing quantities in the gas turbine 
engines as they exhibit excellent properties at high 
loads rather than the polycrystalline superalloys. 
New developments in the superalloy metallurgy are 
required for the next generation of ultra-efficient 
power generation systems that also use turbines. 
However, the issue of existing alloys application in 
power turbines is practically not considered in the 
scientific literature, since all alloys are mainly 
investigated in a rather narrow range of thermal 
exposures. 

One of the possible solutions to the problem of 
adapting existing alloys to new products being 
developed is a comprehensive "structure-properties" 

analysis of the known materials. Synthesis of new 
materials has always been based on knowledge of 
the behavior of alloying elements, their participation 
in the formation of structural components, and their 
contribution to the complex of service properties of 
products. Often, the role of alloying elements is 
considered individually, which generates a lot of 
conflicting information. The analysis of the effect of 
the chemical composition on the service properties 
of the final products is an entangled and 
multidimensional task, especially when it comes to 
create a fundamentally new family of materials. For 
the well-known systems, it is advisable to take into 
account the entire experimental experience using 
statistical analysis and modern numerical methods. 
As a result, the chemical composition of the 
material is optimized to solve specific design 
problems, the field of application of materials is 
expanded, and the selection of specific alloys is 
facilitated. 

As we know, for many materials and under 
loading conditions, which are invariant in time, the 
creep strain rate is considered constant; i.e. it 
approaches a steady-state [8]. Design against creep 
usually necessitates a consideration of the time to 
rupture. Its multiplication with the creep strain rate 
gives a constant, which is numerically equal to the 
creep ductility, i.e. the creep strain to failure. All 
this made it possible for certain test conditions 
(applied stress σ (MPa), time τ (hours), and 
temperature T (K)) to derive the complex Larson-
Miller parameter ( ௅ܲெ) (1) where 20 is the Larson–
Miller constant, which varies with the alloy type. 
For any given material, the dependence of the 
applied stress on the Larson–Miller parameter is 
approximately straight, although there is a tendency 
for some non-linearity, which results in the lines 
curving gently downwards [9]. 

 ௅ܲெ ൌ ሺݐ ൅ 273ሻ ൈ ሺ20 ൅ ݈݃߬ሻ 

TABLE 1. Chemical compositions of some common cast superalloys forming a sub-sample, wt% (Ni is balanced) 

Alloy Cr Co Mo W Al Ti Nb Ta Re Ru Hf C B Zr 

CMSX-4 6.5 9.0 0.6 6.0 5.6 1.0 - 6.5 3.0 - 0.1 - - - 

PWA1480 10.0 5.0 - 4.0 5.0 1.5 - 12.0 - - - - - - 

RENE N5 7.0 8.0 2.0 5.0 6.2 - - 7.0 3.0 - 0.2 - - - 

IN100 10.0 15.0 3.0 - 5.5 4.7 - - - - - 0.18 0.004 0.06 

MAR-M247 8.0 10.0 0.6 10.0 5.5 1.0 - 3.0 - - 1.5 0.15 0.015 0.03 

MC-NG 4.0 - 1.0 5.0 6.0 0.5 - 5.0 4.0 4.0 0.1 - - - 
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The chemistry of the single-crystal superalloys 
has been refined for last decades in order to improve 
their service properties. Often, instead of natural 
modelling of the alloys properties, various 
mathematical models are applied. However, up to 
date, there is no unified model that describes the 
behavior of the alloys with a specific composition 
under various test conditions. The most frequently 
used models are various statistical ones. Moreover, 
since the behavior of the alloys’ properties are often 
non-linear, the statistical approach based on 
utilization of artificial neural networks is considered 
the most promising since the neural networks 
models have proven to be a great tool that are able 
to simulate significant non-linearity [10]. 

In this work, we describe an approach to predict 
UTS of superalloys based on the knowledge of their 
compositions (especially, the content of principal 
alloying elements). For modelling, we use the 
Bayesian regularized artificial neural network 
(BRANN). The test conditions are combined in the 
complex Larson-Miller parameter. The neural 
network, which has been trained on the alloys 
composition and the service properties of some 
known superalloys predicts the unknown values of 
the Larson-Miller parameter that corresponds to sets 
of isothermal exposures for whose this alloy has not 
been studied, yet. Also, we compare the obtained 
results with the known experimental data 
 

2 Approach and Experimental 
The main tasks of this work is to determine the 
dependence of the heat resistance and thermal 
stability variations against the Larson-Miller 
parameters of the tests using a database with 
information on the chemical compositions and 
properties of high-temperature nickel-based 
superalloys. Another one is to reveal the impact of 
major alloying elements on the heat resistance and 
thermal stability and to compare it with the known 
data.  

For modelling, an approach based on artificial 
neural networks is used. The input to the network is 
alloy composition and test conditions (t, τ). The task 
of the network is to predict the missing UTS values 
under the required conditions (t, τ). Validation of 
predicted data is carried out analytically. A trained 
neural network predicts the results for a selected 
sample of alloys (see Table 1) that did not 
participate in the training. The results of known tests 
and predictions are compared among themselves. 

To solve the aforementioned problems, we have 
collected a database where the information on 308 

nickel-based superalloys, containing their chemical 
compositions, heat resistances (UTS) under different 
test conditions has been stored. Data on alloys were 
collected from open sources (articles, catalogues, 
theses, etc.), as well as, in private conversations 
with representatives of manufacturers. About a half 
of the selected alloys are Soviet and Russian ones, 
the remaining half is made up by Western 
companies. The conditions and results of the tensile 
tests for these alloys formed 2,205 individual 
samples in the database, which later served as input 
data for neural networks training. Each known result 
of the strength tests under certain conditions of the 
isothermal exposure forms one sample. 

In order to improve the information content of 
the database and to facilitate comparison of the test 
results for the heat resistance, the temperature and 
time of isothermal exposures were interpolated in 
accordance with the Larson-Miller parameter ( ௅ܲெ) 
(1), however, we have modified it by dividing it 
with 105 (2) in order to obtain values of the same 
dimension as the alloying elements concentrations 
do (decimal format with values between 0 and 1). 
Physically, this only means the change of the input 
data scale and it does not affect the model. 
Moreover, the alloying elements concentrations 
have been normalized to the nickel concentration. 

 ௅ܲெ ൌ ܶ ൈ ሺ20 ൅ ݈݃߬ሻ ൈ 10ିହ 

Since the UTS range (σ, MPa) in experiments 
covers a band of several orders of magnitude (from 
one to thousands of MPa), it was decided using the 
logarithmic transformation (3). The use of the 
logarithm, also, makes prediction errors relative. 
This statement follows from the consideration that 
the expression (dy/y = const) is a differential 
equation of a logarithmic function. The network 
target values (y) for the inverse transformation (4) 
exclude the possibility of negative σ values, which 
are physically impossible. All this improves the 
predictive ability of the model. 

 ݕ ൌ 	 lg ߪ 

 ߪ ൌ 10௬ 

The network type selection has been made by 
analogy with the similar studies that present the 
results of superalloys compositions modelling [11–
17] and with relation to our previous work [18]. The 
selected Bayesian regularized artificial neural 
network (BRANN) is more robust than standard 
back-propagation ones and is able to reduce or even 
eliminate the need of cross-validation. It has shown 
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satisfactory predictive ability along with resistance 
to overtraining. 

To create and train the BRANN, the MATLAB 
2014a software package with the built-in MATLAB 
nntools was used. To improve the accuracy of 
simulations, a specially developed bootstrap 
algorithm and input data pre-processing were also 
applied. The configuration of the selected network 
and the training algorithm are shown in Fig.1. 

We utilized a fixed configuration of the network 
that consisted of 13 neurons in the hidden layer 
(N=13). As the input data for the network, we have 
selected 23 detected alloying elements (m=23, with 
excluded balanced nickel) and ௅ܲெ for 308 alloys, 
which formed the array of the dimension (24×308). 
The output values are described by (3) and form the 
column vector (1×308). 

The training procedure consists of seven cycles 
(corresponding to seven independent networks 
created) with a certain number of iterations (up to 
200). Each iteration consists of wee (up to 30) 
training epochs. In each iteration, the input data vary 
based on a quintile decomposition of the input 
database. For the training cycle, only randomly 
selected 80% of initial data are applied. At each 
iteration, the formed dataset is randomly divided 
into the training (75%) and the test (25%) sub-
samples that are involved in training of this 
particular network. 
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Fig. 1. ANN Architecture: (a) ANN configuration; (b) ANN training 
algorithm 

The stop criterion for the iteration is the desired 
level of mean squared error (MSE) (5) achieved 
during the training. The target MSE value is chosen 
empirically and is set slightly below the level at 
which the MSE of training and test samples 
obtained after the next training epoch begin to 
diverge. In our case, based on preliminary study, we 
selected the following criterion: MSE.test ≥ 
1.2×MSE.training. 

 ܧܵܯ ൌ
∑ ሺ௬೛ೝ೐೏೔೎೟೐೏_೔ି௬೑ೌ೎೟_೔ሻ

మ೙
೔సభ

௡
 

Thus, after numerous experiments, an artificial 
neural networks set with the highest accuracy of 
prediction (MSE=	1.5 ൈ 10ିଷ) has been selected. The 
set consists of seven networks that work in parallel. 
The further predictions made are calculated as 
average values of all seven predictions accounts for 
the back transformation (4). The final network 
performance is evaluated by the related root mean 
squared error (RRMSE) (6) of the known σ values 
predictions. 

 ܧܵܯܴܴ ൌ
ඨ∑ ቆ

഑೛ೝ೐೏೔೎೟೐೏_ೕష഑ೝ೐ೌ೗_ೕ
഑ೝ೐ೌ೗_ೕ

ቇ
మ

ೖ
ೕసభ

௞
 

The performed ANN computations made it 
possible to supplement the missing parameters in 
the database on the service properties of high-
temperature nickel-based superalloys. After that, the 
dependences of the long-term strength on the 
Larson-Miller parameter for all compositions of 
alloys contained in the database were reconstructed.  

For most alloys, the dependence σ( ௅ܲெ) 
demonstrates a noticeable nonlinearity and the 
asymptotic tendency of σ to zero with ௅ܲெ greater 
than 30. Therefore, we have decided to approximate 
only the part of the area of the most intense 
structural changes ( ௅ܲெ greater than 22) by the 
exponent using equation (7) under the assumption 
that ݔ ≡ ௅ܲெ. 

 ሻݔሺߪ ൌ ଴ߪ ൈ expሺെ
௫ି௫బ
௣
ሻ 

were σ0, x0, p are the parameters that are established 
during the approximation. The area below ௅ܲெ=22 is 
out of practical interest and is not considered. The 
most common test conditions for alloys is an 
exposure of 1000 hours (τ=1000) at a temperature of 
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1000°C (t=1000). This condition (ߪଵ଴଴଴ଵ଴଴଴) is equal to 
x=29.3.  

Therefore, for the further visualization of the 
results, we utilized UTS with the Larson-Miller 
parameter equal to 29 (σ(29)). The σ0 parameter has 
no physical sense and was introduced just as the 
exponent (7) parameter; x0 is a shift. The most 
physically inspired parameter in the model (7) is the 
slope factor p. It is p what responsible for the 
description of the thermo-temporal dynamics of the 
alloys phase stability. The higher the p, the slower 
the process of thermo-temporary degradation of the 
alloy structure goes. 

 
3 Results and Discussion 
On the basis of artificial neural networks, a model 
for simulation UTS of nickel-based superalloys has 
been created. The network performance is reflected 
in Fig.2(a) as the dependence of predicted values vs 
experimental ones (R2=0.986). In accordance with 
(3), the y parameter is an order of UTS values. As it 
can be seen (Fig.2(a)), the most residues are 
observed in the area of up to 100 MPa (y≤2). 

The UTS vs ௅ܲெ dependencies has been built for 
the alloys from the validation sub-sample (Table 1) 
in order to verify the model performance. The errors 
(RRMSE) of the UTS neural network predictions 
distribution are shown in Fig.2(b).  

 

a) 

b) 

Fig. 2. (a) Predicted y (3, absolute values) vs experimental ones total 
for training and test data sets; (b) the UTS ANN predictions errors 
(RRMSE) distribution 

As it can be seen, the error is smaller than 0.20 
for most observations. Moreover, the median value 
is 0.06 and 75% percentile is just 0.10. The RRMSE 
values more than 0.2 are corresponded to the y 
values (see Fig.2(a)) less than 2. Thus, we might 
define the model as successful and the results as 
sufficiently precise. The greatest prediction errors of 
the model are localized in the area of stresses that 
does not represent much practical interest (100 
MPa). 

The examples of the model predictions of UTS 
together with the real experimental data and with 
approximations by (7) for six common superalloys 
(see Table 1) are shown in Fig.3. The figure shows 
the satisfactory accuracy for both, the ANN 
predictions and the exponential approximation. The 
slope factor p characterizes how close the 
exponential curve is to the abscissa axis, thus, we 
may deduce that p is an indirect indicator of the 
alloy thermal stability. The larger the p, the longer 
the structure resists destruction. It is also necessary 
to note the following important point resulting from 
image analysis. It is obvious that the approximation 
of the dependence of the heat resistance of the 
alloys on the Larson-Miller parameter by the 
exponent is valid only in the range of intense 
structural changes. Approximation of the entire 
range requires a more complex model that has yet to 
be developed. We might suggest the dependence 
would be sigmoidal. 

For the further validation of the model, we have 
applied the calculated values of the heat resistance 
(σ) and the thermal stability (p) to visually assess 
the effect of particular doping. We took new data on 
molybdenum, chromium, rhenium, tantalum, cobalt, 
and tungsten (see Fig. 5) in comparison with known 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT Andrey Tyagunov, Oleg Milder, Dmitry Tarasov

E-ISSN: 2224-3496 292 Volume 15, 2019



information [19] (see Fig. 4) as these elements make 
the main contribution to the hardening of alloys. 

The results of modelling show that Ta, Re (and 
Ru, as the literature confirms) increase the high-
temperature strength of alloys; W has no significant 
influence; Cr, Co and Mo reduce it. These results 
are in good agreement with the experimental data 
given in [20], which confirms their adequacy. Two 
elements (Co and Mo) demonstrate inconsistent 
behavior when compared with [19], however, our 
data belong to a substantially wider range of 
chemical compositions, and consequently more 
trustworthy. Furthermore, we provide an initial 
background for the linear trends. Frankly speaking, 
it is obvious that linear regressions do not reflect the 
nature of the alloys properties behavior; however, 
we still have no reason to introduce another 
approximation model. 

The exponential slope factor p demonstrates a 
weak dependence on the content of a particular 
element. The exceptions are possibly tungsten (there 
is a slight decrease in the thermal stability of the 
alloy with an increase in the concentration of the 
element) and molybdenum (the opposite is 
observed). 

As follows from numerous studies, the 
overdeposition of high-temperature nickel-based 
alloys leads to an unbalanced phase composition 
and, consequently, to a decrease in thermal stability. 
Only rhenium and ruthenium block the development 
of embrittlement phases and substantially slow 

down the degradation. We could also add tantalum 
to this list. The issue of the mutual influence of 
alloying elements still raises a plenty of disputes. 
Partly, the answers are given in the framework of 
quantum chemistry, though such an analysis is 
beyond the scope of our work. 

 
Fig. 4. The experimental dependences of the heat resistance against the 

content of certain alloying elements [19] 

We should also add some more explanations 
from the metallurgical point of view. The basis of 
alloys’ heat resistance is created by a complex 
structure: γ-nickel solid solution, the main 

reinforcing intermetallic γ’-phase with 
stoichiometry (Ni, Co)3(Al, Ti...), MC carbides, γ + 
γ’ and MC+MB eutectics. There are two main 
mechanisms of hardening: solid solution and 
dispersion. They provide enhanced strength 
properties of alloys. Since the products that are 

     

(a)  (b) (c) 

 
(d)  (e) (f) 

Fig.3. Calculated data on the effect of certain alloying elements on the ultimate tensile strength of nickel alloys 
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made of the alloys operate at high temperatures, 
certain changes in their structure are resulted by the 
influence of diffusion processes. Accordingly, the 
structure is degraded. The rate or degree of the 
structure degradation is described by another 
substantial property of thermal stability or phase 
stability. The higher the thermal stability, the longer 
the operation time of the product. Previously, 
thermal stability was described only empirically, 
according to morphological and quantitative 
changes in excess phases evaluation. The proposed 
analytical quantitative assessment of thermal 
stability as a coefficient p in the approximation 
formula (7) opens up new perspectives in modelling 
the properties of the alloys. 

The heat resistance of the alloys, as a rule, is 
compared directly by the heat resistance change 
depend on the Larson–Miller parameter. The 
experimentally observed points commonly form 
these dependencies. However, this is not correct, 
since UTS characterizing the heat resistance cannot 
be less or equal to zero, just as the Larson-Miller 
parameter cannot take negative values. Therefore, 
this relation can only be described by an asymptotic 
(in particular, exponential) dependence.  

For a computational experiment using ANNs, a 
database containing information on 308 cast 
chemical compositions of high-temperature nickel-
based superalloys and on the results of 
measurements of UTS of single-crystal samples 
prepared from these alloys was created. Firstly, the 
ANN simulated the missing results for each alloy 
composition. Then, graphs of dependences of UTS 
on the Larson-Miller parameter for some well-
known alloys were plotted (see Fig. 3). From the 
above results, it follows that all the graphs have the 
same exponential appearance of change in heat 
resistance with an increase in the Larson-Miller 
parameter, however, on each graph one can 
distinguish a point that characterizes a particular 
alloy. This is the locality of transition of the intense 
heat resistance decrease to a flatter area. It is 
obvious that the decrease in heat resistance is 
associated with the processes of the original 
structure degradation. 

 

4 Conclusion 
The high-temperature nickel-based superalloys are 
unique materials with complex doping and a 
heterophasic phase composition. This paper has 
addressed the following issues concerning the 
superalloys: modelling the variation in heat 

resistance under different values of the Larson-
Miller parameter; definition of the thermal stability 
as a numerical parameter; modelling the influence 
of the alloying elements on the heat resistance and 
the thermal stability.  

To solve the problems, we have engaged the 
following toolkit: the common Bayesian artificial 
neural network with a specially developed bootstrap 
training procedure; the database of 308 known 
superalloys contents and service properties that 
formed 2,205 individual samples for ANN training. 
We trained the network, then we predicted the 
unknown values of the alloys UTS (heat resistance), 
and thus filled the database. We approximated the 
dependence σ( ௅ܲெ) by the exponential equation (7). 
Based on the complete database, we verified the 
model performance by assessing the RRMSE values 
(the median RRMSE is 0.06) and by plotting the 
σ( ௅ܲெ) dependence together with the 
approximations for six common superalloys from 
the sub-sample, which did not take part in the 
training.  

The verification has shown good predictive 
accuracy of the ANN model, as well as, the 
satisfactory description of the σ( ௅ܲெ>22) 
dependence by an exponent. Nevertheless, we 
suggest that for the whole σ( ௅ܲெ) range, the better 
approximation equation is sigmoidal. This issue 
must be studied further. Thus, ANN calculations 
have helped to obtain the dependences of the heat 
resistance and the thermal stability on the Larson-
Miller parameter. The results of the calculations 
coincide with the experimentally obtained data, 
which confirms the model adequacy. 

From the metallurgical point of view, the 
structure of the cast metal is heterophasic: γ-solid 
solution, γ’ secondary phase, MC carbides, γ + γ’ 
eutectics, MC + MB (carbo-boride) eutectics and so 
on. The decrease in heat resistance with increasing 
Larson-Miller parameter is explained by the 
degradation of the structure with the release of new 
embrittling phases: TCP, М6С, М23С6. The cuboid 
particles of the γ’ secondary phase are first 
coagulated, breaking down the partially coherent 
bond with the γ- matrix, then coalescing into blocks, 
after which they break up into a few rounded small 
particles and dissolve in the γ- matrix. Carbide 
eutectics of font morphology also break up into 
colonies of small round particles along the 
boundaries of polyhedral M-C carbides. Reactions 
also occur with the release of two new М6С and 
М23С6, related to TCP phases. Eutectic γ, γ’ and 
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MC+MB also change their morphology and the 
number of secretions. The instability of the 
structural components leads to the nucleation and 
development of other TCP phases: sigma, Laves, 
etc. The meta-stability of the structure leads to the 
weakening of alloys, consisting in a two-stage 
decrease in heat resistance. 

Since the basis of the heat resistance is the 
dispersion hardening by the intermetallic γ’ phase, 
the solid solution and carbide hardening 
mechanisms still work at the end of the processes of 
the alloy structure degradation after completion of 
dissolution of the main hardening phase, in 
particular, if carbon is introduced into the alloy. The 
spread of predictions on the sloping area of the 
dependence of UTS by the Larson-Miller parameter 
is associated with these phenomena. 

During the exponential approximation of the 
dependence, σ( ௅ܲெ) we found a characteristic 
feature for each composition of the alloy. It is the 
exponential parameters p, characterizing the thermal 
stability of the alloys. Dependencies of stress and 
slope on the composition of elements, judging by 
the plots (Fig.5), have opposite trends. All these 
suggest that the simultaneous achievement of heat 
resistance and thermal stability is a sophisticated 
issue, the solution of which cannot be based on the 
use of linear models. Moreover, taking into account 
the mutual influence of two or more alloying 
elements on the properties of the alloy, even using 
non-linear regression models, is an extremely 
resource-intensive task. Thus, approaches based on 
the application of artificial neural networks that do 
not require significant computational power, and at 

(a) (b)

(c) (d)

(e) (f)

Fig.5. The effect of a particular element content (wt%) on the UTS σ(29) and thermal stability (p or slope): (a) Cr, (b) Co, (c) Mo, (d) W, (e) Ta, 
(f) Re; the solid lines indicate the linear regressions of UTS difference, the dotted lines indicate the linear regressions of the thermal stability 
difference
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the same time have high modelling accuracy (with 
the correct training algorithms), seem very 
promising in solving such problems. 

We tried to find similar works in which some 
mathematical method of predicting UTS would be 
applied. However, we were not able to detect them. 
Therefore, a comparison with any other model is 
currently impossible. The success of the neural 
model may inspire researchers to use regression 
models to solve similar problems. We hope this 
issue will find its development in the near future. 
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